Verified Compilation of IMP to Linear IMP

Initial Bachelor Seminar Talk

Clara Schneidewind
Advisor: Prof. Dr. Gert Smolka

SAARLAND
UNIVERSITY
I
COMPUTER SCIENCE

May 22nd, 2015

Compiler Verification

Content

© Introduction
@ Previous Work
@ Motivation

Q@ mP

@ Semantics
@ Weakest Preconditions

© LivpP

@ Compiler
@ Compiler Correctness

@ Outlook

Compiler Verification 2/21

Previous Work

@ Glynn Winskel
The formal semantics of programming languages
MIT Press, 1993

E Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Catalin Hritcu, Vilhelm Sjoberg, and Brent Yorgey.
Software Foundations
Electronic textbook, 2015

[Tobias Nipkow, Gerwin Klein
Concrete semantics
Springer, 2014

[§ Sigurd Schneider, Gert Smolka, Sebastian Hack
A First-Order Functional Intermediate Language for Verified Compilers
CoRR, abs/1503.08665, 2015

Compiler Verification 3/21

Motivation

Example

if x <0then x ::= — x else SKIP ;
while n > 1 do
n:=n—1;

X i=X-X

c,d == xu=e | c;d | if bthencelsed | while bdoc | SKIP
where e € AExp, b € BExp

@ The (terminating) execution of the program changes the state

Compiler Verification 4 /21

IMP

Example Example
if x < 0 then x ::= — x else SKIP ; if bx<0 then a(x = —x) else asKIP ;
while n > 0 do while b,~(do

ni=n-—1; a(n = n—1) ;

X=X X) d(x 1= x-x)

IMP: ¢,d == a | ¢;d | if bthencelsed | while bdo ¢ J

Y=YV a:Xy =Y b:X—B)

@ SKIP can be treated as an action that leaves the state unchanged

@ Neither arithmetic nor boolean expressions have to be specified

Compiler Verification 5/21

Big-Step Semantics

o relates initial and final state of an execution

@ BS c o 7 := the execution of ¢ in state o terminates in state 7

ac=r BScoi0o BSdosos bo=true BScor
BSaor BS (¢; d) 01 03 BS (if bthen celse d) o 7
bo =false BSdort bo = false
BS (if bthen celse d) o 7 BS (while bdo ¢) 0 &

bo = true BS coj oy BS (while bdo ¢) o3 03
BS (while b do ¢) 01 03

Compiler Verification 6 /21

Step-Indexed Semantics

@ Motivation: executable evaluation function for IMP

@ Problem: Possible divergence of programs leads to divergence of the
evaluation function
@ Solution: decreasing index

> guarantees termination
» denotes the depth limit of the recursion tree

@Sl : N = IMP— ¥ — option &

@ Sl nco=[7] := at recursion depth of at most n the execution of ¢
in o terminates in 7

@ Sl nco =1 := the execution of ¢ in ¢ does not terminate in n steps

@ Relation between Big-Step Semantics and Step-Indexed Semantics :

BScor< 3In.Slnco =] J

Compiler Verification 7/21

Weakest Precondition Semantics

Motivation: Observation of partial assignments instead of whole states

Conditions = predicates on states: ¥ — Prop
@ Does the execution of p in o terminates in a state 7 that satisfies
AT.Tx =87

Characterization by a predicate:
WP ¢ o Q := the execution of c in state o terminates in a state that
satisfies Q

Compiler Verification 8 /21

Weakest Precondition Semantics

ac=71 Q(7) WPcoP WPdPQ
WP ao Q WP (c;d)o Q
bo=true WPco Q bo =false WPdo Q
WP (if b then celse d) 0 Q WP (if b then celse d) o Q

bo =true WPco P WP (whilebdoc)P Q
WP (while bdo ¢) o Q

bo = false Q (o)
WP (while bdo ¢) o Q

WP cP Q:=Vo,P(c) > WP co Q J
0/21

Weakest Preconditions

@ Subsumption of all states o satisfying WP ¢ o Q as the weakest
precondition of ¢ and Q:

wp(c, Q) ;= Ao WP co Q J

@ Definition of weakest preconditions via BS

wpc(c, Q) :==Xo.37,BScoTAQT)

@ Coincidence of Big-Step and Weakest Precondition Semantics:

WP co Q <> wpc(c,Q)o
BScorT<+WPco(M.7=1)

Compiler Verification 10 / 21

LIMP

@ IMP not linear due to sequences and while-loops (needs a stack)
@ Goal of compilation: Translation of IMP to a register transfer
language
» Sequences have to be linearized (no nesting)
» While-loops have to be translated to blocks and calls

Example Example

while b,-; do block I : if by~1 thena, . n_1); (3(x == xx); call [)
a(p = n—1) else halt ;
A(x = x-x) call /

Compiler Verification 11 /21

LIMP

Alternative syntax for blocks and calls:
Example
Example

while b,~1 do ..
fix .if bp>1 thenag, .— n_1); A= xx) i

a(p:=n-1) s
{ Y else halt
a()<::=)<~><)
s,t x= halt | a;s | if bthencelsed | fixl.s | I=s;t | / J

Construct for non-recursive blocks helps to linearize conditionals
(omittable)

Compiler Verification 12 /21

LIMP

Example (p)
if by<o then a;, ._ _,) else askip ;
while b,~; do
(n = n-1) s
d(x = x-x))
Example

k = fix . if by>1 thenag,.— n_1); A= xx) i |
else halt;

if byco then ai .— _,); kelse k

Compiler Verification 13 /21

Weakest Precondition Semantics

Qo) ac=7 WPso Q@ bo=true WPso Q
WP halt o Q WP (a; s) o Q WP (if bthenselset) o Q
bo = false WPto Q WP sg o s 0 Q WP tf o Q
WP (if bthenselset) c @ WP (fixx.s) 0 @ WP (x=s;t)0 Q

@ At most one recursive premise per rule
@ No interpolants are needed

@ Substitution semantics for fix and remember makes it unnecessary to
keep track of introduced blocks

Compiler Verification 14 /21

Compiler

@ Problem: IMP-commands cannot be translated isolatedly as there is
no sequence operator in LIMP to compose them

Example

C (81) ~ ap ; halt C (az) ~s ao : halt C (31 ; 32) ~s 7

@ Solution: Translation of IMP-commands with respect to a
continuation

¢(_,):IMP — LIMP — LIMP

C(a,s)=a;s

C(c; d,s) =C(c,C(d,s))

C(if bthen celse d,s) = x = s; if bthen C(c, x) else C(d,x) x fresh
) =

C(while b do c,s) = fix x.if b then C(c, x) else s x fresh

y

Compiler Verification 15 /21

Compiler in practice

@ More convenient to use De Bruijn indices instead of names

@ Makes it unnecessary to carry a counter as third argument

s,t m= halt | a;s | if bthencelsed | fixs | rems;t | /]

C(_,):IMP — LIMP — LIMP
C(a,s)=a;s
C(c;d,s)=C(c,C(d,s))
C(if b then c else d,s) = rems; if b then C(c,0) else C(d,0)
) =

C(while b do c, s) = fixif b then C(c,0) else s 1*

W

shift-operation s 1! increases indices in s by 1 and prevents missreferencing

Compiler Verification 16 / 21

Compiler Correctness

Goal: show correspondence of IMP-command ¢ and LIMP-command
C(c, halt) with respect to weakest precondition semantics:

WP co Q <+ WP C(c, halt) o Q

If-part:

@ Generalization of the lemma for arbitrary continuations
o Effect of the continuation has to be taken into account

e Idea: C(c,s) first executes ¢ and then continues with s

WP co P — (Vo.P(c) = WP so Q) = WP C(c,s) o Q]

C(c,s)

Compiler Verification 17 / 21

To be shown:

while bdo ¢

C(c,C(while bdo c,s))

S1
IHc :

C(c,s1)

while b do ¢

52
IHw : Vs :

C(while b do ¢, s)

Compiler Verification 18 / 21

Compiler Correctness

bo = true —
WP (C(c,C(while bdo c,s))) o R <> WP (C(while bdo c,s)) o R

Proof.
C(while bdo c,s)) o R

P (fixx.if bthen C(c,x) else s) o R
2t \wp (if b then C(c, fix x.if b then C(c, x) else s) else s5) o R
27218 \WP (C(c, fix x. if b then C(c, s) else s)) o R
29C \WP (C(c,C(while bdo s, 5))) o R

WP (
Def.C (

Substitution Lemma

C(c,s)f =C(c,sy)
19 / 21

Compiler Correctness

Idea: split up the execution of C(c, s) into the executions of ¢ and s

WP C(c,s) 0 Q 5 IT,WP co (1) AWP s T Q)
C
— g
c 7.' S

Proof by induction on c.
Problem: Inductive hypothesis in the while-true-case too weak.

Compiler Verification 20 /21

Outlook

@ Adding system calls to IMP and LIMP

» Weakest Precondition Semantics with traces
» Allows to compare non-terminating programs

@ Weakest Precondition Semantics for functional IL

Compiler Verification 21 /21

© Appendix

Compiler Verification

Step-indexed Semantics

SI' :N— IMP — ¥ — option o
SlI0co=1
Sln(a)o=ao]
Sln(c;d)o=SI"(n—1)d (Sl (n—1) co)
Sl n (if bthen celse d) o = if(bo) thenSl (n—1) co elseSl (n—1) d o
Sl n (while bdo ¢) o = if (bo) then
SI' (n—1) (while bdo ¢) (SI (n—1) c o)

else [o]

SI' :N — IMP — option ¥ — option &
S'ncfo]=Slnco
S'ncl =1

Compiler Verification 23 /21

Nested While-loop

Example

C(while b; do (while b2 do a), halt)

= fix (if by then C(while b, do a,0) else halt 1)

= fix (if by then fix (if b, then C(a,0) else 0 1) else halt)
= fix (if b1 then fix (if b, then a; 0 else 1) else halt)

Compiler Verification 24 /21

Compiler Correctness

@ Idea: split up the execution of C(c, s) in the execution of ¢ and s
o 7 denotes the state after the execution of c in o

WP C(c,s) 0 Q = IT,WP co (1) A\WP s T Q]

@ we try to prove by induction on ¢, but fail in the while-case:

IHc: WP C(c,s) 0 Q > IT,WP co (1) \WP s 7 Q
A : WP (fix x.if bthen C(c,x) else s) 0 Q

subst \\/p (if bthen C(c,C(while bdo c,s)) elses) o Q

e 3r,WP c o 7 AWP C(while cdo d,s) 7 Q

4 Inductive hypothesis for while would be needed

@ Solution: Introduction a new step-indexed predicate for WP that
keeps track of the number of substitutions in the fix-case
@ Nested induction n the substitution depth in the while-case

Compiler Verification 25 /21

Compiler Correctness

WP co P — (Yo.P(c) = WP so Q) — WP C(c,s) o Q J

Proof by induction on WP ¢ o P:

Proof.
Case: while b do ¢ (true):
A :WPco P A, : WP (whilebdo c) P Q A; WPsQR
IHc: WP ' P Q" — WP (C(c,s")) o Q
IHw : WP s’ Q Q" — WP (C(while bdo c,s")) P Q'
A3 :WPsQR

2 \wp (C(while bdo c,s)) P R

e wp (C(c,C(while bdo c,s))) o R

Compiler Verification 26 /21

	Introduction
	Previous Work
	Motivation

	IMP
	Semantics
	Weakest Preconditions

	LIMP
	Compiler
	Compiler Correctness

	Outlook
	Appendix
	Appendix

