Verified Compilation of IMP to Linear IMP Initial Bachelor Seminar Talk

Clara Schneidewind Advisor: Prof. Dr. Gert Smolka

May 22nd, 2015

Content

- Introduction
 - Previous Work
 - Motivation
- 2 IMP
 - Semantics
 - Weakest Preconditions
- 3 LIMP
 - Compiler
 - Compiler Correctness
- Outlook

Previous Work

- Glynn Winskel
 The formal semantics of programming languages
 MIT Press, 1993
 - Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjoberg, and Brent Yorgey. Software Foundations
 Electronic textbook, 2015
 - Tobias Nipkow, Gerwin Klein Concrete semantics Springer, 2014
 - Sigurd Schneider, Gert Smolka, Sebastian Hack A First-Order Functional Intermediate Language for Verified Compilers CoRR, abs/1503.08665, 2015

Motivation

Example

```
if x < 0 then x := -x else SKIP;
while n > 1 do
n := n - 1;
x := x \cdot x
```

```
c,d ::= x ::= e \mid c \; ; \; d \mid \text{ if } b \text{ then } c \text{ else } d \mid \text{ while } b \text{ do } c \mid \text{SKIP} where e \in AExp, \; b \in BExp
```

• The (terminating) execution of the program changes the state

IMP

Example

if x < 0 then x := -x else SKIP; while n > 0 do n := n - 1; $x := x \cdot x$

Example

if $b_{x<0}$ then $a_{(x:=-x)}$ else a_{SKIP} ; while $b_{n>0}$ do $a_{(n:=n-1)};$ $a_{(x:=x\cdot x)}$

IMP:
$$c, d := a \mid c; d \mid \text{ if } b \text{ then } c \text{ else } d \mid \text{ while } b \text{ do } c$$

$$\Sigma = \mathcal{V} \to \mathbb{V}$$
 $a: \Sigma \to \Sigma$ $b: \Sigma \to \mathbb{B}$

- SKIP can be treated as an action that leaves the state unchanged
- Neither arithmetic nor boolean expressions have to be specified

Big-Step Semantics

- relates initial and final state of an execution
- BS $c \sigma \tau :=$ the execution of c in state σ terminates in state τ

$$\frac{a\,\sigma = \tau}{\mathsf{BS}\,a\,\sigma\,\tau} \qquad \frac{\mathsf{BS}\,c\,\sigma_1\,\sigma_2\quad\mathsf{BS}\,d\,\sigma_2\,\sigma_3}{\mathsf{BS}\,(c\,;\,d)\,\sigma_1\,\sigma_3} \qquad \frac{b\,\sigma = \mathit{true}\quad\mathsf{BS}\,c\,\sigma\,\tau}{\mathsf{BS}\,(\mathsf{if}\,\,b\,\mathsf{then}\,\,c\,\,\mathsf{else}\,\,d)\,\sigma\,\tau}$$

$$\frac{b\,\sigma = \mathit{false}\quad\mathsf{BS}\,d\,\sigma\,\tau}{\mathsf{BS}\,(\mathsf{if}\,\,b\,\,\mathsf{then}\,\,c\,\,\mathsf{else}\,\,d)\,\sigma\,\tau} \qquad \frac{b\,\sigma = \mathit{false}}{\mathsf{BS}\,(\mathsf{while}\,\,b\,\,\mathsf{do}\,\,c)\,\sigma\,\sigma}$$

$$\frac{b\,\sigma = \mathit{true}\quad\mathsf{BS}\,c\,\sigma_1\,\sigma_2\quad\mathsf{BS}\,(\mathsf{while}\,\,b\,\,\mathsf{do}\,\,c)\,\sigma_2\,\sigma_3}{\mathsf{BS}\,(\mathsf{while}\,\,b\,\,\mathsf{do}\,\,c)\,\sigma_1\,\sigma_3}$$

Step-Indexed Semantics

- Motivation: executable evaluation function for IMP
- Problem: Possible divergence of programs leads to divergence of the evaluation function
- Solution: decreasing index
 - guarantees termination
 - denotes the depth limit of the recursion tree
- SI : $\mathbb{N} \to \mathsf{IMP} \to \Sigma \to \mathsf{option} \Sigma$
- SI $n c \sigma = \lceil \tau \rceil$:= at recursion depth of at most n the execution of cin σ terminates in τ
- SI $n c \sigma = \bot :=$ the execution of $c \text{ in } \sigma$ does not terminate in n steps
- Relation between Big-Step Semantics and Step-Indexed Semantics :

BS
$$c \sigma \tau \Leftrightarrow \exists n$$
. SI $n c \sigma = \lceil \tau \rceil$

7 / 21

Weakest Precondition Semantics

- Motivation: Observation of partial assignments instead of whole states
- Conditions = predicates on states: $\Sigma \rightarrow Prop$
- Does the execution of p in σ terminates in a state τ that satisfies $\lambda \tau. \tau x = 8$?
- Characterization by a predicate: WP c σ Q := the execution of c in state σ terminates in a state that satisfies Q

Weakest Precondition Semantics

$$\frac{a\,\sigma = \tau \quad Q(\tau)}{\text{WP } a\,\sigma \,Q} \qquad \frac{\text{WP } c\,\sigma \,P \quad \text{WP } d\,P\,\,Q}{\text{WP } (c\,;\,d)\,\sigma \,Q}$$

$$\frac{b\,\sigma = true \quad \text{WP } c\,\sigma \,Q}{\text{WP } (\text{if } b \text{ then } c \text{ else } d)\,\sigma \,Q} \qquad \frac{b\,\sigma = false \quad \text{WP } d\,\sigma \,Q}{\text{WP } (\text{if } b \text{ then } c \text{ else } d)\,\sigma \,Q}$$

$$\frac{b\,\sigma = true \quad \text{WP } c\,\sigma \,P \quad \text{WP } (\text{while } b \text{ do } c)\,P\,Q}{\text{WP } (\text{while } b \text{ do } c)\,\sigma \,Q}$$

$$\frac{b\,\sigma = false \quad Q\,(\sigma)}{\text{WP } (\text{while } b \text{ do } c)\,\sigma \,Q}$$

$$\mathsf{WP}\ c\ P\ Q := \forall \sigma, P(\sigma) \to \mathsf{WP}\ c\ \sigma\ Q$$

Weakest Preconditions

• Subsumption of all states σ satisfying WP c σ Q as the weakest precondition of c and Q:

$$wp(c, Q) := \lambda \sigma.WP \ c \ \sigma \ Q$$

• Definition of weakest preconditions via BS :

$$\mathsf{wp}_{\mathcal{C}}(c, Q) := \lambda \sigma. \exists \tau, \mathsf{BS}\ c\ \sigma\ \tau \wedge Q\ \tau$$

Coincidence of Big-Step and Weakest Precondition Semantics:

WP
$$c \sigma Q \leftrightarrow wp_C(c, Q) \sigma$$

BS $c \sigma \tau \leftrightarrow WP c \sigma (\lambda \tau' . \tau = \tau')$

LIMP

- IMP not linear due to sequences and while-loops (needs a stack)
- Goal of compilation: Translation of IMP to a register transfer language
 - Sequences have to be linearized (no nesting)
 - ▶ While-loops have to be translated to blocks and calls

Example

while $b_{n>1}$ do

$$a_{(n::=n-1)}$$
;

$$a(x := x \cdot x)$$

Example

```
block I: if b_{n>1} then a_{(n := n-1)}; (a_{(x := x \cdot x)}; call I) else halt;
```

call /

LIMP

Alternative syntax for blocks and calls:

Example

while $b_{n>1}$ do

$$a_{(n ::= n-1)}$$
;

$$a(x := x \cdot x)$$

Example

fix
$$l$$
. if $b_{n>1}$ then $a_{(n := n-1)}$; $a_{(x := x \cdot x)}$; l else halt

$$s, t ::=$$
halt $| a; s |$ if b then c else $d |$ fix $l. s | $l = s; t |$ l$

Construct for non-recursive blocks helps to linearize conditionals (omittable)

LIMP

Example (p)

```
if b_{x<0} then a_{(x::=-x)} else a_{SKIP};
while b_{n>1} do a_{(n::=n-1)};a_{(x::=x\cdot x)}
```

Example

```
k = fix I. if b_{n>1} then a_{(n ::= n-1)}; a_{(x ::= x \cdot x)}; I else halt; if b_{x<0} then a_{(x ::= -x)}; k else k
```

Weakest Precondition Semantics

$$\frac{Q(\sigma)}{\mathsf{WP}\;\mathsf{halt}\;\sigma\;Q} \quad \frac{a\,\sigma = \tau \quad \mathsf{WP}\;s\;\sigma\;Q}{\mathsf{WP}\;(a\,;\,s)\;\sigma\;Q} \quad \frac{b\,\sigma = \mathit{true} \quad \mathsf{WP}\;s\;\sigma\;Q}{\mathsf{WP}\;(\mathsf{if}\;b\;\mathsf{then}\;s\;\mathsf{else}\;t)\;\sigma\;Q}$$

$$\frac{b\,\sigma = \mathit{false} \quad \mathsf{WP}\;t\;\sigma\;Q}{\mathsf{WP}\;(\mathsf{if}\;b\;\mathsf{then}\;s\;\mathsf{else}\;t)\;\sigma\;Q} \quad \frac{\mathsf{WP}\;s^{\times}_{\mathsf{fix}\,\times\,.\,s}\;\sigma\;Q}{\mathsf{WP}\;(\mathsf{fix}\,x.\,s)\;\sigma\;Q} \quad \frac{\mathsf{WP}\;t^{\times}_{s}\;\sigma\;Q}{\mathsf{WP}\;(x=s\,;\;t)\;\sigma\;Q}$$

- At most one recursive premise per rule
- No interpolants are needed
- Substitution semantics for fix and remember makes it unnecessary to keep track of introduced blocks

Compiler

 Problem: IMP-commands cannot be translated isolatedly as there is no sequence operator in LIMP to compose them

Example

$$\mathcal{C}\left(a_{1}\right)\rightsquigarrow a_{1}$$
; halt $\mathcal{C}\left(a_{2}\right)\rightsquigarrow a_{2}$; halt $\mathcal{C}\left(a_{1};a_{2}\right)\rightsquigarrow ?$

Solution: Translation of IMP-commands with respect to a continuation

$$\mathcal{C}(_,_): \mathsf{IMP} \to \mathsf{LIMP} \to \mathsf{LIMP}$$

$$\mathcal{C}(a,s) = a\,;\, s$$

$$\mathcal{C}(c\,;\, d,s) = \mathcal{C}(c,\mathcal{C}(d,s))$$

$$\mathcal{C}(\mathsf{if}\ b\ \mathsf{then}\ c\ \mathsf{else}\ d,s) = x = s\,;\, \mathsf{if}\ b\ \mathsf{then}\ \mathcal{C}(c,x)\ \mathsf{else}\ \mathcal{C}(d,x)\quad x\ \mathit{fresh}$$

$$\mathcal{C}(\mathsf{while}\ b\ \mathsf{do}\ c,s) = \mathsf{fix}\ x.\ \mathsf{if}\ b\ \mathsf{then}\ \mathcal{C}(c,x)\ \mathsf{else}\ s \qquad x\ \mathit{fresh}$$

Compiler in practice

- More convenient to use De Bruijn indices instead of names
- Makes it unnecessary to carry a counter as third argument

$$s, t ::=$$
halt $| a; s |$ if b then c else $d |$ fix $s |$ rem $s; t |$ $$$ 1$

$$\mathcal{C}(_,_): \mathsf{IMP} \to \mathsf{LIMP} \to \mathsf{LIMP}$$

$$\mathcal{C}(a,s) = a\,;\,\, s$$

$$\mathcal{C}(c\,;\,d,s) = \mathcal{C}(c,\mathcal{C}(d,s))$$

$$\mathcal{C}(\mathsf{if}\,\, b\, \mathsf{then}\,\, c\, \mathsf{else}\,\, d,s) = \mathsf{rem}\, s\,;\,\, \mathsf{if}\,\, b\, \mathsf{then}\,\, \mathcal{C}(c,0)\,\, \mathsf{else}\,\, \mathcal{C}(d,0)$$

$$\mathcal{C}(\mathsf{while}\,\, b\, \mathsf{do}\,\, c,s) = \mathsf{fix}\,\, \mathsf{if}\,\, b\, \mathsf{then}\,\, \mathcal{C}(c,0)\,\, \mathsf{else}\,\, s\, \uparrow^1$$

shift-operation $s \uparrow^1$ increases indices in s by 1 and prevents missreferencing

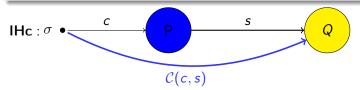
Goal: show correspondence of IMP-command c and LIMP-command $\mathcal{C}(c,halt)$ with respect to weakest precondition semantics:

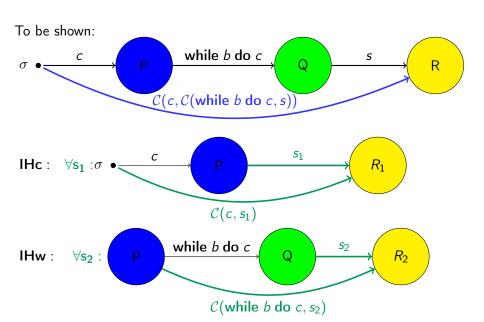
WP
$$c \sigma Q \leftrightarrow \text{WP } C(c, halt) \sigma Q$$

If-part:

- Generalization of the lemma for arbitrary continuations
- Effect of the continuation has to be taken into account
- Idea: $\mathcal{C}(c,s)$ first executes c and then continues with s

$$\mathsf{WP}\ c\ \sigma\ P \to (\forall \sigma. P(\sigma) \to \mathsf{WP}\ s\ \sigma\ Q) \to \mathsf{WP}\ \mathcal{C}(c,s)\ \sigma\ Q$$





$$b \sigma = true \rightarrow$$
WP ($\mathcal{C}(c, \mathcal{C}(\mathsf{while}\ b\ \mathsf{do}\ c, s))) \sigma\ R \leftrightarrow \mathsf{WP}\ (\mathcal{C}(\mathsf{while}\ b\ \mathsf{do}\ c, s)) \sigma\ R$

Proof.

Substitution Lemma

$$C(c,s)_t^X = C(c,s_t^X)$$

Idea: split up the execution of $\mathcal{C}(c,s)$ into the executions of c and s

$$\begin{array}{c} \mathsf{WP}\;\mathcal{C}(c,s)\;\sigma\;Q\to\exists\tau,\mathsf{WP}\;c\;\sigma\;(\tau)\land\mathsf{WP}\;s\;\tau\;Q\\\\ \hline\\ \sigma\;\bullet & \qquad \qquad Q\\\\ \hline\\ \end{array}$$

Proof by induction on c.

Problem: Inductive hypothesis in the while-true-case too weak.

Outlook

- Adding system calls to IMP and LIMP
 - Weakest Precondition Semantics with traces
 - Allows to compare non-terminating programs
- Weakest Precondition Semantics for functional IL

Step-indexed Semantics

$$\mathsf{SI} \quad : \mathbb{N} \to \mathsf{IMP} \to \Sigma \to \mathsf{option} \ \sigma$$

$$\mathsf{SI} \ 0 \ c \ \sigma = \bot$$

$$\mathsf{SI} \ n \ (a) \ \sigma = \lceil a \ \sigma \rceil$$

$$\mathsf{SI} \ n \ (c \ ; \ d) \ \sigma = \mathsf{SI'} \ (n-1) \ d \ (\mathsf{SI} \ (n-1) \ c \ \sigma)$$

$$\mathsf{SI} \ n \ (\mathsf{if} \ b \ \mathsf{then} \ c \ \mathsf{else} \ d) \ \sigma = \mathit{if} \ (b \ \sigma) \ \mathit{then} \ \mathsf{SI} \ (n-1) \ c \ \sigma \ \mathit{else} \ \mathsf{SI} \ (n-1) \ c \ \sigma)$$

$$\mathsf{SI} \ n \ (\mathsf{while} \ b \ \mathsf{do} \ c) \ \sigma = \mathit{if} \ (b \ \sigma) \ \mathit{then}$$

$$\mathsf{SI'} \ (n-1) \ (\mathsf{while} \ b \ \mathsf{do} \ c) \ (\mathsf{SI} \ (n-1) \ c \ \sigma)$$

$$\mathit{else} \ \lceil \sigma \rceil$$

SI' :
$$\mathbb{N} \to \mathsf{IMP} \to \mathsf{option} \ \Sigma \to \mathsf{option} \ \Sigma$$

SI' $n \ c \ \lceil \sigma \rceil = \mathsf{SI} \ n \ c \ \sigma$
SI' $n \ c \ \bot = \bot$

Nested While-loop

Example

```
C(while b_1 do (while b_2 do a), halt)
```

- = fix (if b_1 then C(while b_2 do a, 0) else halt \uparrow^1)
- = fix (if b_1 then fix (if b_2 then C(a, 0) else $0 \uparrow^1$) else halt)
- = fix (if b_1 then fix (if b_2 then a; 0 else 1) else halt)

- Idea: split up the execution of C(c,s) in the execution of c and s
- ullet au denotes the state after the execution of c in σ

$$\mathsf{WP}\; \mathcal{C}(c,s)\; \sigma\; Q \to \exists \tau, \mathsf{WP}\; c\; \sigma\; (\tau) \land \mathsf{WP}\; s\; \tau\; Q$$

we try to prove by induction on c, but fail in the while-case:

IHc: WP
$$C(c, s)$$
 σ $Q \rightarrow \exists \tau$, WP c σ $(\tau) \land$ WP s τ Q

A: WP (fix x . if b then $C(c, x)$ else s) σ Q

$$\xrightarrow{subst.}$$
 WP (if b then $C(c, C(while b do c, s))$ else s) σ Q

$$\xrightarrow{IHc}$$
 $\exists \tau$, WP c σ τ \land WP $C(while c do d, s)$ τ Q

$$\xrightarrow{\ell}$$
 Inductive hypothesis for while would be needed

- Solution: Introduction a new step-indexed predicate for WP that keeps track of the number of substitutions in the fix-case
- Nested induction n the substitution depth in the while-case

$$\mathsf{WP}\ c\ \sigma\ P \to (\forall \sigma. P(\sigma) \to \mathsf{WP}\ s\ \sigma\ Q) \to \mathsf{WP}\ \mathcal{C}(c,s)\ \sigma\ Q$$

Proof by induction on WP $c \sigma P$:

Proof.

Case: **while** *b* **do** *c* (true):

 $A_1 : WP c \sigma P$ $A_2 : WP (while b do c) P Q$ $A_3 : WP s Q R$

IHc : WP s' P Q' \rightarrow WP $(\mathcal{C}(c,s'))$ σ Q'

IHw : WP $s' \ Q \ Q' \rightarrow \mathsf{WP} \ (\mathcal{C}(\mathsf{while} \ b \ \mathsf{do} \ c, s')) \ P \ Q'$

 A_3 : WP s Q R

 $\stackrel{HW}{\Longrightarrow}$ WP ($\mathcal{C}(\text{while } b \text{ do } c, s))$ P R

 $\stackrel{IHc}{\Longrightarrow}$ WP ($\mathcal{C}(c,\mathcal{C}(\mathsf{while}\ b\ \mathsf{do}\ c,s)))\ \sigma\ R$

